3.12.32 \(\int \frac {(1+2 x)^{7/2}}{1+x+x^2} \, dx\)

Optimal. Leaf size=183 \[ \frac {4}{5} (2 x+1)^{5/2}-12 \sqrt {2 x+1}-\frac {3 \sqrt [4]{3} \log \left (2 x-\sqrt {2} \sqrt [4]{3} \sqrt {2 x+1}+\sqrt {3}+1\right )}{\sqrt {2}}+\frac {3 \sqrt [4]{3} \log \left (2 x+\sqrt {2} \sqrt [4]{3} \sqrt {2 x+1}+\sqrt {3}+1\right )}{\sqrt {2}}-3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {2 x+1}}{\sqrt [4]{3}}\right )+3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {2 x+1}}{\sqrt [4]{3}}+1\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 183, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {692, 694, 329, 211, 1165, 628, 1162, 617, 204} \begin {gather*} \frac {4}{5} (2 x+1)^{5/2}-12 \sqrt {2 x+1}-\frac {3 \sqrt [4]{3} \log \left (2 x-\sqrt {2} \sqrt [4]{3} \sqrt {2 x+1}+\sqrt {3}+1\right )}{\sqrt {2}}+\frac {3 \sqrt [4]{3} \log \left (2 x+\sqrt {2} \sqrt [4]{3} \sqrt {2 x+1}+\sqrt {3}+1\right )}{\sqrt {2}}-3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {2 x+1}}{\sqrt [4]{3}}\right )+3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {2 x+1}}{\sqrt [4]{3}}+1\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 + 2*x)^(7/2)/(1 + x + x^2),x]

[Out]

-12*Sqrt[1 + 2*x] + (4*(1 + 2*x)^(5/2))/5 - 3*Sqrt[2]*3^(1/4)*ArcTan[1 - (Sqrt[2]*Sqrt[1 + 2*x])/3^(1/4)] + 3*
Sqrt[2]*3^(1/4)*ArcTan[1 + (Sqrt[2]*Sqrt[1 + 2*x])/3^(1/4)] - (3*3^(1/4)*Log[1 + Sqrt[3] + 2*x - Sqrt[2]*3^(1/
4)*Sqrt[1 + 2*x]])/Sqrt[2] + (3*3^(1/4)*Log[1 + Sqrt[3] + 2*x + Sqrt[2]*3^(1/4)*Sqrt[1 + 2*x]])/Sqrt[2]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 692

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*d*(d + e*x)^(m -
1)*(a + b*x + c*x^2)^(p + 1))/(b*(m + 2*p + 1)), x] + Dist[(d^2*(m - 1)*(b^2 - 4*a*c))/(b^2*(m + 2*p + 1)), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rule 694

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[x^m*(
a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0]
&& EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {(1+2 x)^{7/2}}{1+x+x^2} \, dx &=\frac {4}{5} (1+2 x)^{5/2}-3 \int \frac {(1+2 x)^{3/2}}{1+x+x^2} \, dx\\ &=-12 \sqrt {1+2 x}+\frac {4}{5} (1+2 x)^{5/2}+9 \int \frac {1}{\sqrt {1+2 x} \left (1+x+x^2\right )} \, dx\\ &=-12 \sqrt {1+2 x}+\frac {4}{5} (1+2 x)^{5/2}+\frac {9}{2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \left (\frac {3}{4}+\frac {x^2}{4}\right )} \, dx,x,1+2 x\right )\\ &=-12 \sqrt {1+2 x}+\frac {4}{5} (1+2 x)^{5/2}+9 \operatorname {Subst}\left (\int \frac {1}{\frac {3}{4}+\frac {x^4}{4}} \, dx,x,\sqrt {1+2 x}\right )\\ &=-12 \sqrt {1+2 x}+\frac {4}{5} (1+2 x)^{5/2}+\frac {1}{2} \left (3 \sqrt {3}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {3}-x^2}{\frac {3}{4}+\frac {x^4}{4}} \, dx,x,\sqrt {1+2 x}\right )+\frac {1}{2} \left (3 \sqrt {3}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {3}+x^2}{\frac {3}{4}+\frac {x^4}{4}} \, dx,x,\sqrt {1+2 x}\right )\\ &=-12 \sqrt {1+2 x}+\frac {4}{5} (1+2 x)^{5/2}-\frac {\left (3 \sqrt [4]{3}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt [4]{3}+2 x}{-\sqrt {3}-\sqrt {2} \sqrt [4]{3} x-x^2} \, dx,x,\sqrt {1+2 x}\right )}{\sqrt {2}}-\frac {\left (3 \sqrt [4]{3}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt [4]{3}-2 x}{-\sqrt {3}+\sqrt {2} \sqrt [4]{3} x-x^2} \, dx,x,\sqrt {1+2 x}\right )}{\sqrt {2}}+\left (3 \sqrt {3}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {3}-\sqrt {2} \sqrt [4]{3} x+x^2} \, dx,x,\sqrt {1+2 x}\right )+\left (3 \sqrt {3}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {3}+\sqrt {2} \sqrt [4]{3} x+x^2} \, dx,x,\sqrt {1+2 x}\right )\\ &=-12 \sqrt {1+2 x}+\frac {4}{5} (1+2 x)^{5/2}-\frac {3 \sqrt [4]{3} \log \left (1+\sqrt {3}+2 x-\sqrt {2} \sqrt [4]{3} \sqrt {1+2 x}\right )}{\sqrt {2}}+\frac {3 \sqrt [4]{3} \log \left (1+\sqrt {3}+2 x+\sqrt {2} \sqrt [4]{3} \sqrt {1+2 x}\right )}{\sqrt {2}}+\left (3 \sqrt {2} \sqrt [4]{3}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2+4 x}}{\sqrt [4]{3}}\right )-\left (3 \sqrt {2} \sqrt [4]{3}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2+4 x}}{\sqrt [4]{3}}\right )\\ &=-12 \sqrt {1+2 x}+\frac {4}{5} (1+2 x)^{5/2}-3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {1+2 x}}{\sqrt [4]{3}}\right )+3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {1+2 x}}{\sqrt [4]{3}}\right )-\frac {3 \sqrt [4]{3} \log \left (1+\sqrt {3}+2 x-\sqrt {2} \sqrt [4]{3} \sqrt {1+2 x}\right )}{\sqrt {2}}+\frac {3 \sqrt [4]{3} \log \left (1+\sqrt {3}+2 x+\sqrt {2} \sqrt [4]{3} \sqrt {1+2 x}\right )}{\sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 182, normalized size = 0.99 \begin {gather*} \frac {16}{5} \sqrt {2 x+1} x^2+\frac {16}{5} \sqrt {2 x+1} x-\frac {56}{5} \sqrt {2 x+1}-\frac {3 \sqrt [4]{3} \log \left (2 x-\sqrt [4]{3} \sqrt {4 x+2}+\sqrt {3}+1\right )}{\sqrt {2}}+\frac {3 \sqrt [4]{3} \log \left (2 x+\sqrt [4]{3} \sqrt {4 x+2}+\sqrt {3}+1\right )}{\sqrt {2}}-3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (1-\frac {\sqrt {4 x+2}}{\sqrt [4]{3}}\right )+3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (\frac {\sqrt {4 x+2}}{\sqrt [4]{3}}+1\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + 2*x)^(7/2)/(1 + x + x^2),x]

[Out]

(-56*Sqrt[1 + 2*x])/5 + (16*x*Sqrt[1 + 2*x])/5 + (16*x^2*Sqrt[1 + 2*x])/5 - 3*Sqrt[2]*3^(1/4)*ArcTan[1 - Sqrt[
2 + 4*x]/3^(1/4)] + 3*Sqrt[2]*3^(1/4)*ArcTan[1 + Sqrt[2 + 4*x]/3^(1/4)] - (3*3^(1/4)*Log[1 + Sqrt[3] + 2*x - 3
^(1/4)*Sqrt[2 + 4*x]])/Sqrt[2] + (3*3^(1/4)*Log[1 + Sqrt[3] + 2*x + 3^(1/4)*Sqrt[2 + 4*x]])/Sqrt[2]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.28, size = 123, normalized size = 0.67 \begin {gather*} \frac {4}{5} \sqrt {2 x+1} \left ((2 x+1)^2-15\right )+3 \sqrt {2} \sqrt [4]{3} \tan ^{-1}\left (\frac {\frac {2 x+1}{\sqrt {2} \sqrt [4]{3}}-\frac {\sqrt [4]{3}}{\sqrt {2}}}{\sqrt {2 x+1}}\right )+3 \sqrt {2} \sqrt [4]{3} \tanh ^{-1}\left (\frac {\sqrt {2} 3^{3/4} \sqrt {2 x+1}}{\sqrt {3} (2 x+1)+3}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(1 + 2*x)^(7/2)/(1 + x + x^2),x]

[Out]

(4*Sqrt[1 + 2*x]*(-15 + (1 + 2*x)^2))/5 + 3*Sqrt[2]*3^(1/4)*ArcTan[(-(3^(1/4)/Sqrt[2]) + (1 + 2*x)/(Sqrt[2]*3^
(1/4)))/Sqrt[1 + 2*x]] + 3*Sqrt[2]*3^(1/4)*ArcTanh[(Sqrt[2]*3^(3/4)*Sqrt[1 + 2*x])/(3 + Sqrt[3]*(1 + 2*x))]

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 200, normalized size = 1.09 \begin {gather*} -6 \cdot 3^{\frac {1}{4}} \sqrt {2} \arctan \left (\frac {1}{3} \cdot 3^{\frac {3}{4}} \sqrt {2} \sqrt {3^{\frac {1}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 2 \, x + \sqrt {3} + 1} - \frac {1}{3} \cdot 3^{\frac {3}{4}} \sqrt {2} \sqrt {2 \, x + 1} - 1\right ) - 6 \cdot 3^{\frac {1}{4}} \sqrt {2} \arctan \left (\frac {1}{3} \cdot 3^{\frac {3}{4}} \sqrt {2} \sqrt {-3^{\frac {1}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 2 \, x + \sqrt {3} + 1} - \frac {1}{3} \cdot 3^{\frac {3}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 1\right ) + \frac {3}{2} \cdot 3^{\frac {1}{4}} \sqrt {2} \log \left (3^{\frac {1}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 2 \, x + \sqrt {3} + 1\right ) - \frac {3}{2} \cdot 3^{\frac {1}{4}} \sqrt {2} \log \left (-3^{\frac {1}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 2 \, x + \sqrt {3} + 1\right ) + \frac {8}{5} \, {\left (2 \, x^{2} + 2 \, x - 7\right )} \sqrt {2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*x)^(7/2)/(x^2+x+1),x, algorithm="fricas")

[Out]

-6*3^(1/4)*sqrt(2)*arctan(1/3*3^(3/4)*sqrt(2)*sqrt(3^(1/4)*sqrt(2)*sqrt(2*x + 1) + 2*x + sqrt(3) + 1) - 1/3*3^
(3/4)*sqrt(2)*sqrt(2*x + 1) - 1) - 6*3^(1/4)*sqrt(2)*arctan(1/3*3^(3/4)*sqrt(2)*sqrt(-3^(1/4)*sqrt(2)*sqrt(2*x
 + 1) + 2*x + sqrt(3) + 1) - 1/3*3^(3/4)*sqrt(2)*sqrt(2*x + 1) + 1) + 3/2*3^(1/4)*sqrt(2)*log(3^(1/4)*sqrt(2)*
sqrt(2*x + 1) + 2*x + sqrt(3) + 1) - 3/2*3^(1/4)*sqrt(2)*log(-3^(1/4)*sqrt(2)*sqrt(2*x + 1) + 2*x + sqrt(3) +
1) + 8/5*(2*x^2 + 2*x - 7)*sqrt(2*x + 1)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 138, normalized size = 0.75 \begin {gather*} \frac {4}{5} \, {\left (2 \, x + 1\right )}^{\frac {5}{2}} + 3 \cdot 12^{\frac {1}{4}} \arctan \left (\frac {1}{6} \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (3^{\frac {1}{4}} \sqrt {2} + 2 \, \sqrt {2 \, x + 1}\right )}\right ) + 3 \cdot 12^{\frac {1}{4}} \arctan \left (-\frac {1}{6} \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (3^{\frac {1}{4}} \sqrt {2} - 2 \, \sqrt {2 \, x + 1}\right )}\right ) + \frac {3}{2} \cdot 12^{\frac {1}{4}} \log \left (3^{\frac {1}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 2 \, x + \sqrt {3} + 1\right ) - \frac {3}{2} \cdot 12^{\frac {1}{4}} \log \left (-3^{\frac {1}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 2 \, x + \sqrt {3} + 1\right ) - 12 \, \sqrt {2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*x)^(7/2)/(x^2+x+1),x, algorithm="giac")

[Out]

4/5*(2*x + 1)^(5/2) + 3*12^(1/4)*arctan(1/6*3^(3/4)*sqrt(2)*(3^(1/4)*sqrt(2) + 2*sqrt(2*x + 1))) + 3*12^(1/4)*
arctan(-1/6*3^(3/4)*sqrt(2)*(3^(1/4)*sqrt(2) - 2*sqrt(2*x + 1))) + 3/2*12^(1/4)*log(3^(1/4)*sqrt(2)*sqrt(2*x +
 1) + 2*x + sqrt(3) + 1) - 3/2*12^(1/4)*log(-3^(1/4)*sqrt(2)*sqrt(2*x + 1) + 2*x + sqrt(3) + 1) - 12*sqrt(2*x
+ 1)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 129, normalized size = 0.70 \begin {gather*} 3 \,3^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-1+\frac {\sqrt {2}\, \sqrt {2 x +1}\, 3^{\frac {3}{4}}}{3}\right )+3 \,3^{\frac {1}{4}} \sqrt {2}\, \arctan \left (1+\frac {\sqrt {2}\, \sqrt {2 x +1}\, 3^{\frac {3}{4}}}{3}\right )+\frac {3 \,3^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {2 x +1+\sqrt {3}+3^{\frac {1}{4}} \sqrt {2}\, \sqrt {2 x +1}}{2 x +1+\sqrt {3}-3^{\frac {1}{4}} \sqrt {2}\, \sqrt {2 x +1}}\right )}{2}+\frac {4 \left (2 x +1\right )^{\frac {5}{2}}}{5}-12 \sqrt {2 x +1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x+1)^(7/2)/(x^2+x+1),x)

[Out]

4/5*(2*x+1)^(5/2)-12*(2*x+1)^(1/2)+3*3^(1/4)*arctan(1+1/3*2^(1/2)*(2*x+1)^(1/2)*3^(3/4))*2^(1/2)+3*3^(1/4)*arc
tan(-1+1/3*2^(1/2)*(2*x+1)^(1/2)*3^(3/4))*2^(1/2)+3/2*3^(1/4)*2^(1/2)*ln((1+2*x+3^(1/2)+3^(1/4)*2^(1/2)*(2*x+1
)^(1/2))/(1+2*x+3^(1/2)-3^(1/4)*2^(1/2)*(2*x+1)^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 2.97, size = 150, normalized size = 0.82 \begin {gather*} \frac {4}{5} \, {\left (2 \, x + 1\right )}^{\frac {5}{2}} + 3 \cdot 3^{\frac {1}{4}} \sqrt {2} \arctan \left (\frac {1}{6} \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (3^{\frac {1}{4}} \sqrt {2} + 2 \, \sqrt {2 \, x + 1}\right )}\right ) + 3 \cdot 3^{\frac {1}{4}} \sqrt {2} \arctan \left (-\frac {1}{6} \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (3^{\frac {1}{4}} \sqrt {2} - 2 \, \sqrt {2 \, x + 1}\right )}\right ) + \frac {3}{2} \cdot 3^{\frac {1}{4}} \sqrt {2} \log \left (3^{\frac {1}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 2 \, x + \sqrt {3} + 1\right ) - \frac {3}{2} \cdot 3^{\frac {1}{4}} \sqrt {2} \log \left (-3^{\frac {1}{4}} \sqrt {2} \sqrt {2 \, x + 1} + 2 \, x + \sqrt {3} + 1\right ) - 12 \, \sqrt {2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*x)^(7/2)/(x^2+x+1),x, algorithm="maxima")

[Out]

4/5*(2*x + 1)^(5/2) + 3*3^(1/4)*sqrt(2)*arctan(1/6*3^(3/4)*sqrt(2)*(3^(1/4)*sqrt(2) + 2*sqrt(2*x + 1))) + 3*3^
(1/4)*sqrt(2)*arctan(-1/6*3^(3/4)*sqrt(2)*(3^(1/4)*sqrt(2) - 2*sqrt(2*x + 1))) + 3/2*3^(1/4)*sqrt(2)*log(3^(1/
4)*sqrt(2)*sqrt(2*x + 1) + 2*x + sqrt(3) + 1) - 3/2*3^(1/4)*sqrt(2)*log(-3^(1/4)*sqrt(2)*sqrt(2*x + 1) + 2*x +
 sqrt(3) + 1) - 12*sqrt(2*x + 1)

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 75, normalized size = 0.41 \begin {gather*} \frac {4\,{\left (2\,x+1\right )}^{5/2}}{5}-12\,\sqrt {2\,x+1}+\sqrt {2}\,3^{1/4}\,\mathrm {atan}\left (\sqrt {2}\,3^{3/4}\,\sqrt {2\,x+1}\,\left (\frac {1}{6}-\frac {1}{6}{}\mathrm {i}\right )\right )\,\left (3+3{}\mathrm {i}\right )+\sqrt {2}\,3^{1/4}\,\mathrm {atan}\left (\sqrt {2}\,3^{3/4}\,\sqrt {2\,x+1}\,\left (\frac {1}{6}+\frac {1}{6}{}\mathrm {i}\right )\right )\,\left (3-3{}\mathrm {i}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x + 1)^(7/2)/(x + x^2 + 1),x)

[Out]

(4*(2*x + 1)^(5/2))/5 - 12*(2*x + 1)^(1/2) + 2^(1/2)*3^(1/4)*atan(2^(1/2)*3^(3/4)*(2*x + 1)^(1/2)*(1/6 - 1i/6)
)*(3 + 3i) + 2^(1/2)*3^(1/4)*atan(2^(1/2)*3^(3/4)*(2*x + 1)^(1/2)*(1/6 + 1i/6))*(3 - 3i)

________________________________________________________________________________________

sympy [A]  time = 37.94, size = 180, normalized size = 0.98 \begin {gather*} \frac {4 \left (2 x + 1\right )^{\frac {5}{2}}}{5} - 12 \sqrt {2 x + 1} - \frac {3 \sqrt {2} \sqrt [4]{3} \log {\left (2 x - \sqrt {2} \sqrt [4]{3} \sqrt {2 x + 1} + 1 + \sqrt {3} \right )}}{2} + \frac {3 \sqrt {2} \sqrt [4]{3} \log {\left (2 x + \sqrt {2} \sqrt [4]{3} \sqrt {2 x + 1} + 1 + \sqrt {3} \right )}}{2} + 3 \sqrt {2} \sqrt [4]{3} \operatorname {atan}{\left (\frac {\sqrt {2} \cdot 3^{\frac {3}{4}} \sqrt {2 x + 1}}{3} - 1 \right )} + 3 \sqrt {2} \sqrt [4]{3} \operatorname {atan}{\left (\frac {\sqrt {2} \cdot 3^{\frac {3}{4}} \sqrt {2 x + 1}}{3} + 1 \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*x)**(7/2)/(x**2+x+1),x)

[Out]

4*(2*x + 1)**(5/2)/5 - 12*sqrt(2*x + 1) - 3*sqrt(2)*3**(1/4)*log(2*x - sqrt(2)*3**(1/4)*sqrt(2*x + 1) + 1 + sq
rt(3))/2 + 3*sqrt(2)*3**(1/4)*log(2*x + sqrt(2)*3**(1/4)*sqrt(2*x + 1) + 1 + sqrt(3))/2 + 3*sqrt(2)*3**(1/4)*a
tan(sqrt(2)*3**(3/4)*sqrt(2*x + 1)/3 - 1) + 3*sqrt(2)*3**(1/4)*atan(sqrt(2)*3**(3/4)*sqrt(2*x + 1)/3 + 1)

________________________________________________________________________________________